DFT calculation, biological activity, anion sensing application studies and crystal structure of (E)-4-methoxy-2-((4-methylbenzo[d]thiazol-2-ylimino)methyl)phenol

Hüseyin Unver1*, Mustafa Yıldız2, Nuray Yıldırım3, Gökhan Alpaslan4, Bahadir Boyacioglu5, Ayhan Elmali6

1Department of Physics, Faculty of Science, Ankara University, 06100 Beşevler-Ankara, Turkey
2Department of Chemistry, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, TR-17100 Çanakkale, Turkey
3Health Services Vocational School, Çanakkale Onsekiz Mart University, TR-17100 Çanakkale, Turkey
4Department of Medical Services and Techniques, Vocational School of Health Services, Giresun University, 28200 Giresun, Turkey
5Vocational School of Health Services, Ankara University, TR-06290 Kecioren-Ankara, Turkey
6Department of Physics Engineering, Faculty of Engineering, Ankara University, TR-06100, Beşevler, Turkey
*E-mail: huseyin.unver@ankara.edu.tr

Abstract: (E)-4-methoxy-2-((4-methylbenzo[d]thiazol-2-ylimino)methyl)phenol was synthesized from the reaction of 4-methylbenzo[d]thiazol-2-amine with 2-hydroxy-5-methoxybenzaldehyde. The structure of compound has been investigated by using FT-IR, UV-VIS, 1H-NMR, 13C-NMR spectroscopic and X-ray crystallographic techniques. The molecular structure, HOMO-LUMO analysis, molecular electrostatic potential (MEP) and nonlinear optical (NLO) effects of the compound were investigated by using DFT calculations. Additionally, the title compound was tested for its biological activity. UV-Vis spectroscopic studies of the interactions between the Schiff base and calf thymus DNA (CT-DNA) showed that the compound interacts with CT-DNA. The colorimetric response of the compound receptors was investigated before and after the addition of an equivalent amount of each anion to evaluate anion recognition properties.

Keywords: Biology activity; DFT calculations; Calf thymus DNA; Anion sensing; X-ray