Computational study on the interaction of phosphoethanolamine in MCR-1 using molecular dynamics simulation
Chonnikan Hanpaibool1, Eric Lang2, Philip Hinchliffe3, Jame spencer2, Adrian Mulholland2, Thanyada Rungrotmongkol1,4*

1Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
2School of Chemistry, Faculty of Science, University of Bristol, Bristol BS8 1TS, UK
3School of Cellular and Molecular Medicine, Faculty of Science, University of Bristol, Bristol BS8 1TS, UK
4Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

*E-mail: thanyada.r@chula.ac.th

Abstract: Recently the scientists had found a gene which resists to last-resort antibiotic called colistin. Normally, the positively charged colistin bound to negatively charged lipid A can disrupt the gram-negative bacteria outer cell membrane. The mobile colistin resistance gene mcr-1 have been reported that MCR-1 acts as phosphoethanolamine (PEA) transfer reaction to lipid A on the gram-negative bacterial outer membrane which neutralizes the negative charge on bacterial membrane and reduces the colistin binding consequently causing the bacteria resistance to colistin. We performed the 100-ns molecular dynamics simulations on MCR-1 in mono-zinc and di-zinc forms with different protonation states of T285, H395 and H478 residues in water solution at 310 K to examine the zinc coordination and PEA binding. The obtained information of this study suggested that the active conformation may require only a single zinc ion. Model of MCR-1 with PEA binding could be further used for the QM/MM study on enzymatic reaction of PEA transfer and design of competitive inhibitors.

Keywords: MCR-1; Molecular dynamic simulation; Antibiotic resistant