Investigation of structural concepts for rational design of potent compounds against *Mycobacterium tuberculosis* type II dehydroquinase

Auradee Punkvang\(^1\), Pornpan Pungpo\(^2\)

\(^1\)Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand

\(^2\)Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

*E-mail: auradee.punkvang@npu.ac.th

Abstract: *Mycobacterium tuberculosis* type II dehydroquinase (mtDHQ) is an attractive target because it is essential for *M. tuberculosis*, but absent from humans. MD simulations combined with energy decomposition have been applied to investigate structural concepts for designing 2,3-anhydroquininate derivatives that can target mtDHQ. The quantitative contribution of mtDHQ residues responsible for inhibitor binding was visualized using energy decomposition. His101 has the greatest contribution for binding of 2,3-anhydroquininate derivatives in the mtDHQ pocket. The carboxylate moiety is crucial for binding of 2,3-anhydroquininate derivatives, whereas the R-substituent has a small contribution. A small linker attached to the C3 atom of the 2,3-anhydroquininate core is preferable for the R-substituent because the positions of Pro11, Asn12, Leu13 and Asp88a located near the C3 atom are not rearranged to accommodate a different sized R-substituent. The structural concepts provided here can be applied to assist in the rational design of potent compounds against mtDHQ.

Keywords: *Mycobacterium tuberculosis*; Type II dehydroquinase; Shikimate pathway; MD simulation