Structures and spectroscopic properties of indigo in complex with \(\beta \)-cyclodextrin and its derivatives

Supaporn Dokmaisrijan\(^1\)*, Kanokwan Thitinanthavet\(^1\), Thadsanee Kedkham\(^1\), Bodee Nutho\(^2\), Thanyada Rungrotnmongkol\(^3\)\(^4\), Vimon Tantishaiyakul\(^5\), Namon Hirun\(^6\), Naparat Jiwalak\(^7\)

\(^1\)School of Science, Walailak University, Nakhon Si Thammarat 80161, Thailand
\(^2\)Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
\(^3\)Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
\(^4\)Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
\(^5\)Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90112, Thailand
\(^6\)School of Pharmacy, Walailak University, Nakhon Si Thammarat 80161, Thailand
\(^7\)Department of Chemistry, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai 50300, Thailand

*E-mail: sdokmaisrijan@yahoo.com

Abstract: Indigo (IG) is a deep blue dye utilizing for dyeing industry. It is interesting to find a new technique to increase amount of IG in water for a direct dyeing of fabric. In our experimental study, \(\beta \)-cyclodextrin (\(\beta \)-CD) and 2,6-hydroxypropyl-\(\beta \)-cyclodextrin (2,6-HP-\(\beta \)-CD) can help indigo (IG), a vat dye, more dissolve in water. The descriptions of structures and how IG interacts with \(\beta \)-CD and 2,6-HP-\(\beta \)-CD are of interests since it will be useful to add hydrotropic substance to improve a water solubility of IG. In this work, a 1:1 ratio of IG and each \(\beta \)-CD and 2,6-HP-\(\beta \)-CD were studied. The IG/\(\beta \)-CD and IG/2,6-HP-\(\beta \)-CD inclusion complexes were predicted using the Autodock Vina program followed by optimization. The CPCM model was applied to include solvent effect in the calculations. The fully optimized structures obtained from the B3LYP/6-31G(d) calculations were further applied to simulate the UV-Visible spectra of the inclusion complexes. The time-dependent density functional theory (TD-DFT) calculations with the B3LYP functional was selected. The predicted UV-visible spectra of each inclusion complex showed that the maximum absorption wavelength is in a range of 708 and 710 nm. The intramolecular and intermolecular charge transfer were observed.

Keywords: Indigo; 6-HP-\(\beta \)-CD; AutoDock Vina; MD simulation